Market Snapshot: Biofuels

While it may seem like anything can be turned into renewable energy these days, biomass is unique in that it can be converted directly into liquid fuels, called biofuels to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel, these are also known as “drop-in” fuels, meaning they can serve as petroleum substitutes in existing refineries, tanks, pipelines, pumps, vehicles, and smaller engines.

According to BCC Research, the global liquid biofuels market should reach $153.8 billion by 2024 at a compound annual growth rate (CAGR) of 2.2% for the forecast period of 2019 to 2024. The following sections break this broader market down into the markets for ethanol and biodiesel.

Ethanol is an alcohol most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing, but it can also be produced by a process called gasification, which uses high temperatures and a low-oxygen environment to convert biomass into synthesis gas, a mixture of hydrogen and carbon monoxide. The resulting synthesis gas (syngas) can then be chemically converted into ethanol and other fuels. Typically, ethanol is used as a blending agent with gasoline to increase octane and cut down carbon monoxide and other smog-causing emissions. MarketsandMarkets reports that the global bioethanol market is projected to grow from $33.7 billion in 2020 to $64.8 billion by 2025, at a CAGR of 14.0%, from 2020 to 2025. Demand for bioethanol is driven by the mandatory use of bioethanol fuel blends in many countries to reduce greenhouse gas (GHG) emissions and increase the fuel efficiency of the vehicles.

In terms of the different fuel blends, the E10 segment is projected to be the largest market for bioethanol given that European countries and other regions have mandated the use of E10 fuel blends in vehicles to lower the GHGs emission rate. Additionally, a small percentage of bioethanol can be mixed with the pure gasoline to prepare bioethanol blends, which burn more efficiently and produce zero carbon emission. As a result, the use of bioethanol fuel blends is mandated in many countries around the world. Based on these factors, transportation is projected to be the largest end-use segment of the bioethanol market in terms of value and volume.

Biodiesel, the other biofuel, is made by combining alcohol with vegetable oil, animal fat, or recycled cooking grease, and can be used as an additive to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. Although the pace of research interest had slowed, research into the production of liquid transportation fuels from microscopic algae, or microalgae, is on the upswing at NREL. According to BCC Research, the global market for biodiesel reached $35.1 billion in 2019 and should reach $49.2 billion by 2024, at a CAGR of 7.0% for the period of 2019-2024.

Oil crops such as rapeseed, palm, or soybean are the largest source of biodiesel, which makes it a sustainable alternative compared to conventional diesel. Furthermore, biodiesel meets both the biomass-based diesel and overall advanced biofuel requirement of the Renewable Fuel Standard – it also meets specifications created by the American Society of Testing and Materials (ASTM) for legal diesel motor fuel (ASTM D975) and the definition for biodiesel itself (ASTM D6751). Pure biodiesel is referred as B100 (100% biodiesel) but is rarely used given that existing diesel engines may not be suitable for pure biodiesel. Therefore, just as with ethanol, blends are used that have a certain proportion of biodiesel mixed with fossil diesel. Most of the current diesel engines are capable of handling biodiesel blended fuels – the most common blends currently in use are B5 (up to 5% biodiesel) and B20 (6% to 20% biodiesel).

In February of 2020 the Environmental Protection Agency (EPA) released the Renewable Fuel Standard Program: Standards for 2020 and Biomass-Based Diesel Volume for 2021 and Other Changes which set renewable fuel percentage standards every year. The close ties between the agriculture industry, transportation, and others is also an important area for growth, in May of 2020 the U.S. Secretary of Agriculture announced that the U.S. Department of Agriculture intends to make available up to $100 million in competitive grants for activities designed to expand the availability and sale of renewable fuels under the Higher Blends Infrastructure Incentive Program (HBIIP). Looking for more? The Europe & North America Advanced Biofuels Summit 2021 will be held virtually in April 2021.

Market Snapshot: Emerging Applications for Low Noise Amplifiers (LNAs)

Recent Press Releases

Market Snapshot: Emerging Applications for Low Noise Amplifiers (LNAs)

As the Department of Defense (DoD), SpaceX and commercial vendors look to increase connectivity and expand available bandwidth, innovators are exploring new ways to fulfill this need. One such approach is through the use of E-band. Recently, the U.S. Federal Communications Commission established that portions of E-band are available in the U.S. for high density, high data rate wireless services that will enable point-to-point communications, SATCOM, and 5G services. Furthermore, the International Telecommunication Union has permitted several bands for radio and satellite operations with SpaceX applying to use portions of E-band in their Starlink Gen2 satellite constellation. The use of E-band offers the potential for many new opportunities, including new high-resolution imaging and surveillance sensors for DoD systems and commercial applications such as autonomous vehicles.

So, what is E-band, and how can it be leveraged for commercial use? In brief, the waveguide E-band is in the EHF range of the radio spectrum (60 GHz to 90 GHz) which corresponds to the recommended frequency band of operation of WR12 waveguides. These frequencies are equivalent to wave lengths between 5 mm and 3.333 mm. In October 2003, the Federal Communications Commission (FCC) ruled that spectrum at 71 to 76 GHz, 81 to 86 GHz and 92 to 95 GHz would be available for high-density, fixed wireless services in the United States. In June 2020, SpaceX applied for use of the E-Band in the Starlink Gen2 constellation. Generation 2 Starlink Gen2 satellites will include 71 – 79 GHz and 81 – 86 GHz operational frequencies. To operate in this range, low noise amplifiers (LNAs) are used to amplify a low strength signal to a significantly high power level while minimizing noise signals to improve the output. Low noise amplifiers are typically made using the following materials: silicon-based LNA, gallium arsenide based LNA and silicon-germanium based LNA.

Low noise amplifiers are most commonly used for radar and communication systems in satellites, aircrafts, and ships, but are also finding opportunities in wireless infrastructure, wireless LAN interfaces, cellular telephone, GPS, LTE, set-top boxes and biomedical devices. The market for LNAs is expected to grow in healthcare, aerospace & defense, consumer electronics, automotive and other applications through the increasing adoption of low noise amplifiers in consumer electronics as well as the healthcare industry. With the United States, South Korea and Japan launching 5G networks, the market potential for low noise amplifiers, which are extensively used in mm-wave phase array technology used in 5G wireless cellular technology, is growing. IndustryARC reports that the global low noise amplifier (LNA) market is estimated to surpass $4.25bn by 2024, growing at a CAGR of 15.23% during the forecast period 2018-2024. This growth is being driven by the increasing design complexity in consumer electronics and the rapid adoption of LTE technology.

Analysts report that some of the key players in the global low-frequency amplifiers market are NXP Semiconductors N.V. (the Netherlands), Analog Devices, Inc. (U.S.), Infineon Technologies AG (Germany), L3 Narda-MITEQ (U.S.), Qorvo, Inc. (U.S.), Skyworks Solutions, Inc. (U.S.), ON Semiconductor Corp. (U.S.), Panasonic Corp. (Japan), Texas Instruments, Inc. (U.S.), Teledyne Microwave Solutions (U.S.), Atmel Corporation (U.S.), Microchip Technology Inc. (U.S.), Toshiba Corporation (Japan), Diodes Incorporated (U.S.) and more. These players are said to make up a highly fragmented market that looks to mergers & acquisitions, innovation, and brand reinforcement among the leading players to maintain and grow their position in the market. This potential and growth is illustrated in the May 2020 SpaceX Application For Approval For Orbital Deployment And Operating Authority For The SpaceX GEN2 NGSO Satellite System before the Federal Communications Commission which discusses the use of E-band in emerging communications applications.

Market Snapshot: Respiratory Virus Detection

The need for rapid, non-invasive, and accurate testing for viral respiratory infections has perhaps never felt greater. Presently, researchers, public health officials, and others are looking into the plausibility and potential for a mobile, handheld, or badge-type detection system as a diagnostic tool to screen breath for the presence of communicable respiratory viral infections, particularly those with pandemic potential. These tools could be used as a personal health monitor or at check points in office buildings, arenas, airports, subway systems, and borders. Fortunately, advances in the development and adoption of point-of-care testing (POCT) solutions may provide solutions to this challenge by quickly identify infectious diseases and providing actionable information to improve disease management.

While COVID-19 has opened up the market for point of care testing of respiratory infections and driven competition in this space, the market includes the need for testing of approximately 20 different respiratory pathogens. Multiplexed point-of-care testing (xPOCT) refers to the simultaneous on-site detection of different analytes from a single specimen and is reportedly creating market confusion while also lowering costs and improving care. Given the pervasive nature of common respiratory infections, as well as the pandemic potential of others such as COVID-19, the potential market is enormous. Respiratory diseases are already the largest infectious disease category and could multiply in size providing a growth opportunity for diagnostic companies. 

According to a report from ResearchDive, the respiratory disease testing industry in 2020 was valued at $10.6 billion before the beginning of the COVID-19 pandemic, and the projected compound annual growth rate (CAGR) was 8.4% during the forecast period of 2020—2026. However, the CAGR of the global industry is now expected to be 9.2% throughout the estimated timeframe, 2020—2027 based on the impact of the COVID-19 pandemic with the market size projected to cross $20.1 billion by 2027. While COVID-19 diagnostics is dominating the headlines, the total respiratory disease test market consists of diagnosis, severity assessment, treatment monitoring, and evaluation of prognosis in conditions such as influenza, asthma, tuberculosis, pneumoconioses, chronic obstructive pulmonary disease (COPD), obliterative bronchiolitis, mesothelioma, and silicosis. 

There are two main types of POCT used today, immunoassay-based tests and molecular tests. The immunoassay tests detect analytes extracted from a potentially infected patient, and then assessed for microbial antigens and host antibodies. Molecular POCT are polymerase chain reaction (PCR)-based tests which have a higher sensitivity and specificity compared to immunoassay tests or rapid antigen detection tests (RADT).  MarketsandMarkets reports that the global point of care molecular diagnostics market was valued at $632.5 million in 2017 and is projected to reach $1,440.2 million in 2023, at a CAGR of 14.7%. However, the molecular diagnostics segment only makes up 20% of the infectious disease POCT market in the United States. Despite this small percentage, North America is expected to account for the largest share of the global POC molecular diagnostics market. This is attributed to the growing prevalence of infectious diseases, increasing number of CLIA product approvals, and rising government initiatives – however, Asia Pacific is expected to grow at highest CAGR.

Frost & Sullivan provides extensive coverage on these markets and reports that near-patient testing may provide more accurate results than when patient samples have to be transported to laboratories, mistakes carried out during sample handling prior to testing can lead to a 32-75% margin of error, which can cost anywhere from $200 to $2000 per incident. Furthermore, the molecular POC tests have clinically proven better sensitivity and specificity (>95% on an average). The following are identified as major growth areas in this market:

  • New multiplexing ecosystems able to test for multiple infectious diseases
  • Smartphone-based POCT
  • Biochip Array Technology (BAT)
  • Lab-in-a-Drop
  • Host Biomarkers
  • Paper-based Assays (PBA)
  • Portable Molecular Diagnostics (MDx)

While POCT is an established market, technology gaps exist with these test methods, according to a May 2020 research paper which reports that traditional approaches based on pathogen DNA/RNA and protein detection using, respectively, PCR‐based or protein‐based methods in traditional laboratory instruments are not useful when looking to reduce the spread of COVID-19 infections. Additionally, today a Respiratory Pathogens Panel (RP panel) is only performed using one of two semi-invasive methods, nasopharyngeal swab or nasal aspirate. However, researchers are working to develop less invasive, rapid test methods that include breath analysis. Recently, a pilot study out of Children’s Hospital of Philadelphia  analyzed the breath composition of patients with SARS-CoV-2 infection (COVID-19) and discovered six volatile organic compounds more common in infected patients which helps researchers to develop a framework upon which to build a future ‘breathalyzer’ test for SARS-CoV-2 infection in children. Looking to the future, a triad of approaches (human, animal, and in vitro cell culture studies) has allowed researchers to identify candidate breath biomarkers that can be carried forward into larger studies.

Market Snapshot: Supply Chain Security

We all remember saying, “Where is all of the toilet paper?!” With the onset of the COVID-19 pandemic, supply chains – something we tend to take for granted – began gaining increased attention. Supply chains effect everything from the delivery of materials from a supplier to the manufacturer all the way through to its eventual delivery to the end user. In addition to these noteworthy challenges, the need to provide enhanced security in supply chain transactions is garnering increasing attention. Enter – blockchain – a method that will provide increased security and minimize cyberattacks on the supply chain.

MarketsandMarkets reports that post-COVID-19, the global logistics & supply chain industry market size is expected to grow at a Y-O-Y rate of 17.6% from 2020 to 2021, to reach $3,215 billion in 2021, up from $2,734 billion in 2020. This growth is primarily driven by the increasing supply of essential commodities, the creation of supply chain stabilization task force to fight COVID-19, and growing demand and distribution of personal protective equipment. With this overall growth comes an Increasing need for supply chain transparency and a rising demand for enhanced security of supply chain transactions. According to MarketsandMarkets, the global blockchain supply chain market size was $82.1 million in 2017 and is projected to reach $3,314.6 million by 2023, at a Compound Annual Growth Rate (CAGR) of 87.0% during the forecast period.

The blockchain supply chain market ecosystem is made up of notable vendors, such as IBM (US), Microsoft (US), Oracle (US), SAP SE (Germany), AWS (US), Huawei (China), Bitfury (Netherlands), Auxesis Group (India), TIBCO Software (US), BTL Group (Canada), Applied Blockchain (UK), Guardtime (Estonia), Nodalblock (Spain), Peer Ledger (Canada), Blockverify (UK), TransChain (France), RecordsKeeper (Spain), Datex Corporation (US), Ownest (France), Omnichain (US), Traceparency (France), Digital Treasury Corporation (China), Chainvine (UK), VeChain (China), Algorythmix (India), and OpenXcell (US). These players tend to favor partnerships and new product launches as the key growth strategies to offer feature-rich blockchain technology solutions to their customers and further penetrate regions with unmet needs. Other stakeholders of the blockchain supply chain market include cryptocurrency vendors, research organizations, network and system integrators, blockchain service providers, distributed ledger technology solution providers, and technology providers.

Today, big data has become a key element in building business development strategies, and while the logistics and supply chain industry continue to grow, so does the amount of data generated. This increase in data coupled with the persistent requirement for a unified cost-saving solution is expected to drive demand for advanced analytics solutions across industry verticals. Additionally, as companies look to identify opportunities for cost-cutting and resource-savings, supply chain optimization grows in importance. Therefore, access to secure, accurate supply chain analytics provides companies with valuable insights into the root causes of losses and successes. The global supply chain analytics market size is expected to grow from $3.5 billion in 2020 to $8.8 billion by 2025, at a CAGR of 19.8% during the forecast period.

Enhancing supply chain security across government and industry is a key pillar of the National Counterintelligence Strategy of the United States 2020-2022, and in October 2020 the National Counterintelligence and Security Center (NCSC) released a new document, Supply Chain Risk Management: Reducing Threats to Key U.S. Supply Chains, to help private sector and U.S. Government stakeholders mitigate risks to America’s critical supply chains.  NIST also hosted virtual workshop in October 2020 building upon its prior guidance documents, Blockchain Technology, and Securing Manufacturing Industrial Control Systems.